Thermodynamic study of protein dynamic structure in the oxygen binding reaction of myoglobin.
نویسندگان
چکیده
We examined the flash photolysis of oxy complexes of sperm whale myoglobin (Mb) on the nanosecond time scale at ambient temperatures. In this time range, we can observe the geminate reaction of Mb with the O2 ligand existing in the protein matrix after the photodissociation from the heme iron. We found that the fraction of the geminate component to the total O2 photodissociation exhibited temperature dependences. The geminate fraction decreased with rising temperature, indicating that the protein fluctuation is enhanced at high temperature because of thermal agitation. However, the temperature-dependent behavior showed a break at 20 degrees C. Concerning the geminate O2 escaping reaction from the protein matrix to the solvent region, the activation energy above 20 degrees C (0.4 +/- 0.4 kcal/mol) is significantly lower than that below 20 degrees C (5.1 +/- 0.4 kcal/mol). Thermodynamic analysis on the basis of the transition state theory indicated that the O2 escaping reaction above 20 degrees C is entropy dominated whereas that below 20 degrees C is enthalpy dominated. The results were qualitatively compatible with the theoretical prediction by J. Kottalam and D. A. Case [1988) J. Am. Chem. Soc. 110, 7690-7697). Comparing the kinetic and thermodynamic process of the O2 geminate reaction among several Mbs, we concluded that the geminate O2 reaction with Mb is governed by the dynamic motion of the protein which is sensitively controlled by the static interaction of the heme moiety with the surroundings.
منابع مشابه
Biological Applications of Isothermal Titration Calorimetry
Most of the biological phenomena are influenced by intermolecular recognition and interaction. Thus, understanding the thermodynamics of biomacromolecule ligand interaction is a very interesting area in biochemistry and biotechnology. One of the most powerful techniques to obtain precise information about the energetics of (bio) molecules binding to other biological macromolecules is isoth...
متن کاملA Microcalorimetry Study of the Binding of Nickel Ion by Human Growth Hormone
A binding study of nickel ions by a new recombinant human Growth Hormone (hGH), produced as an injected drug, has been done at 27˚C in NaCl solution (50 mM) using an isothermal titration calorimetry. There is a set of three identical and non-interacting binding sites for nickel ions. The intrinsic dissociation equilibrium constant and the molar enthalpy of binding are 40 μM and -16...
متن کاملDynamic motion and rearranged molecular shape of heme in myoglobin: structural and functional consequences.
Myoglobin, a simple oxygen binding protein, was reconstituted with various types of synthetic hemes to manipulate the heme-globin interactions. From the paramagnetic NMR analysis, small heme was found to rotate rapidly about the iron-histidine bond upon. This is a novel and typical example for the fluctuation of protein. The dynamic NMR analysis indicated that the 360° rotational rate of a smal...
متن کاملTheoretical study of interaction of 4-amino phenyl-azobenzene with (SWCNTs), A DFT method
The electronic and structural properties of single wall carbon nanotubes (SWCNTs) interacted with 4-amino phenyl-azobenzene were theoretically investigated by using the hybrid DFT (hybrid-density functional theory) calculations. The amount of thermodynamic parameters of this reaction in the gas and aqueous phase suggesting thermodynamic favourability for adsorption of 4-amino phenyl-azobenzene ...
متن کاملTheoretical study of interaction of 4-amino phenyl-azobenzene with (SWCNTs), A DFT method
The electronic and structural properties of single wall carbon nanotubes (SWCNTs) interacted with 4-amino phenyl-azobenzene were theoretically investigated by using the hybrid DFT (hybrid-density functional theory) calculations. The amount of thermodynamic parameters of this reaction in the gas and aqueous phase suggesting thermodynamic favourability for adsorption of 4-amino phenyl-azobenzene ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 265 31 شماره
صفحات -
تاریخ انتشار 1990